Hybrid Active Filter for Power Factor Correction and Harmonics Elimination in Industrial Networks

Leopold Herman
Prof. Dr. Igor Papič

Faculty of Electrical Engineering,
University of Ljubljana
Slovenia

Winnipeg, MB, September 2011
Compensation devices

- **Definition:** providing the appropriate parameters of the power quality
 - reactive power compensation,
 - harmonics filtering.

- **EN 50160** – maximal values of voltage distortion at the utility-customer PCC.

- **Reactive power compensation and harmonics filtering**

 ![Diagram of passive and active compensators]

 Passive compensators
 + well-established technology,
 + robust,
 - may cause resonance,
 - size.

 Active compensators
 + operation does not depend on the impedance characteristic of the network,
 - high investment and operating costs,
 - switching losses.
Filter topology

- **Hybrid active power filters**
 - combination of passive (elements RLC) and active part (VSC),
 - passive part – reactive power compensation,
 - active part – improving operational characteristics of the PP

- **Most common topological structures**
 - Series hybrid filter
 - Parallel hybrid filter
Simulated network description

Stiff network 3750 MVA
Tr I 110/35 kV, 20 MVA, 10,82 %
Tr II 35/0,676 kV, 3,25 MVA, 7,41 %
Tr III 35/0,675 kV, 3,5 MVA, 6,62 %
DCM I 2,5 MW, 690 V, 350/450 min⁻¹
DCM II 2,15 MW, 690 V, 750 min⁻¹
Other load 6,1 MW, 0,96 MVAr

Fig. Industrial Network Parameters

Passive LC compensator
Q_{PF} 5,4 MVAr
L_{PF} 11,8 mH
C_{PF} 13,81 µF
f_{r-p} 395 Hz, 1,6 %

Fig. Passive Compensator Parameters
Resonance problem

Fig. Calculated impedance-frequency characteristics of the network with and without passive filter; a) series impedance, b) parallel impedance

<table>
<thead>
<tr>
<th>Passive filter</th>
<th>5th</th>
<th>7th</th>
<th>11th</th>
<th>13th</th>
<th>THD</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_F</td>
<td>8.77</td>
<td>0.21</td>
<td>0.09</td>
<td>0.1</td>
<td>8.78</td>
</tr>
<tr>
<td>I_S</td>
<td>31.01</td>
<td>0.51</td>
<td>0.14</td>
<td>0.16</td>
<td>31.03</td>
</tr>
<tr>
<td>I_F</td>
<td>72.20</td>
<td>6.63</td>
<td>1.01</td>
<td>0.83</td>
<td>72.51</td>
</tr>
</tbody>
</table>

Tab. Harmonic content

Fig. Simulated waveforms
Hybrid filter – topology and control algorithm

Used topology

- three-phase, two-level, voltage-source converter (VSC) connected in series with the passive filter capacitance and inductance
- the voltage drop on the capacitor reduces the VSC voltage ratings
- no coupling transformer

Control algorithm

Control law: \(V_{AF}^* = K \cdot I_{Sh} \)

- current controlled voltage source

- Used topology
- Control algorithm

- Fig. Control block diagram of the active filter.
Passive part dimensioned for reactive power compensation.

Active part dimensions:
- The harmonic voltage consists of two components:
 \[V_{AF,ref,h} = V_{S,h} + I_{L,h} \left(X_{C,h} - X_{L,h} \right) \]
 \[= V_{S,h} + I_{L,h} X_{C,1} \frac{f_1}{f_h} \left(1 - \frac{f_h^2}{f_R^2} \right) \]
- Harmonic current
 \[I_{AF,h} = \frac{V_{S,1}}{Z_{PF,1}} + I_{L,h} = \frac{V_{S,1}}{X_{C,1}} \left(\frac{f_R^2}{f_R^2 - f_1^2} \right) + I_{L,h} \]
- Active part rating
 \[S_{AF} = V_{AF} I_{AF} \]
Hybrid filter → ratings

Example

Active filter (no reactive power compensation)

\[U_s = 1 \angle 0^\circ \]
\[I_L = 1 \angle 45^\circ \]

\[U_{s,h} = 0 \]
\[I_{B,5} = \frac{1}{5} I_{B,1} \]
\[\varphi_{I,5} = 5 \varphi_{I,1} \]
\[I_{B,7} = \frac{1}{7} I_{B,1} \]
\[\varphi_{I,7} = 7 \cdot \varphi_{I,1} \]
\[f_R = 240 \text{ Hz} \]

\[S_{AF} = U_{RMS} I_{RMS} = \sqrt{(1)^2 \cdot 0,2^2 + 0,14^2} = 0,244 \text{ p.u.} \]

Series hybrid filter

\[S_{AF} = 0,025 \text{ p.u.} \]
Frequency response characteristics

Equivalent impedance at the series resonance point f_{r-s}

$$Z_{NpS} = \frac{K_\Phi}{N_\Phi}$$

Equivalent impedance at the parallel resonance point f_{r-p}

$$Z_{NpS}^f = \frac{X_{LSS}^f}{K_\Phi R_{SS}^f}$$

Fig. Impedance-frequency characteristics of the network with HAPF; a) series impedance, b) parallel impedance.
Simulation results

Fig. Simulated waveforms

- **PCC Voltage (%):**
 - Only passive filter
 - Hybrid filter

- **System current (%):**

- **Load current (kA):**

- **Active current (kA):**

- **Filter current (kA):**

- **DC voltage (kV):**

- **System current (kA):**
Conclusion

- The presented HAPF is composed of a small-rating VSC connected in series with a shunt single-tuned passive filter.

- For the connection to the network no transformer is needed.

- Since the rated power of the active filter is relatively low, the HAPF represents a viable solution to reactive-power compensation and harmonic filtering.

- The cost comparison between the hybrid, pure passive and stand-alone active filter is excluded from this paper, although it is mandatory as a proof of cost efficiency for the proposed solution.
Thank you for your attention!

leopold.herman@fe.uni-lj.si