A multiphase CFX based approach into ice accretion modeling on a cylinder

Fahed Martini, M.Sc.A., Presented by: Hussein Ibrahim, Ph.D.

Electrical Power and Energy Conference (EPEC 2011)
Winnipeg, Manitoba, Canada
October 3-5, 2011
CONTENTS

- Introduction
- The impact of icing on wind turbines
- State of art of icing simulation (problematic and particularity of ice.)
- Literature reviews, context and objectives
- Methodology and plan of study
- Multiphase CFX based approach into ice accretion modeling on a cylinder
 - Eulerian approach for calculations of water collection efficiency
 - Validation of results
- Conclusion & References
Wind velocity plays important role in wind power resources.

Power available in the wind:

$$P_a = \frac{1}{2} \rho_a \cdot S \cdot V_a^3$$

Very significant wind resources are available in cold regions where icing effects are also significant.
The problem of icing on wind turbines is related to:

- **Performance:** Loss of annual power production.
- **Loads:** Increase of dynamic loads and fatigue.
- **Safety:** Formation of large chunks of ice on blades.

All that coincides with the most abundant days of wind in the year.
Power loss due to the aerodynamic performance degradation depends on the type and the shape of the ice accreted.

Roughness and profile deformation decreases the lift-to-drag ratio CL/CD which leads to the degradation of wind turbine performance and loss of annual power production.

G. Fortin and *J. Perron*, Wind Turbine Icing and De-Icing Anti-icing Materials International Lab., UQAC
STATE OF ART OF ICING SIMULATION

- Theory of icing on structures:
 - complexity of physical phenomenon: many branches of sciences interferes
 - complexity of icing simulation; CFD Aerodynamics (Finite Volume Method)
 - Navier-Stokes equations solution of air flow velocities (time and cost of computations)
 - Panel Method; Calculations of potential flow according to object’s profile (simplicity vs. errors)

- Lack of knowledge for wind turbines’ icing: Most codes, researches or anti-icing/de-icing systems were developed for aircrafts where security has priority over rentability.

- High capabilities of advanced CFD commercial software: Multi-phase and thermal modeling, powerful turbulence 3D simulation and coupling capability with user’s defined code.

- Icing on a cylinder is the fundamental of icing researches.

- In Canada, the phenomenon is underestimated.
PARTICULARITY OF ICE*

At temperatures lower than freezing point down to $-40^\circ C$ water is still liquid until the collision of a solid object.

Fog-type humidity is composed of super-cooled water droplets which is a meta-stable state. This will create problems of immediate phase change (Fluid, Liquid, Solid, vapor) resulting in different types of icing: Rime, Glaze, wet snow,...etc.

Water droplets in air will be treated as multi-phase fluid composed of air as continuous fluid and water as dispersed fluid.
PARAMETERS TO EVALUATE ICE ACCRETION*

• Liquid Water Content LWC
 The quantity of water contained in the air expressed as g/m³.

• Median Volumetric Diameter MVD
 A representative value of the water droplet distribution expressed as µm.

• Water Volume Fraction
 Water volume exists in a control volume.

• Collection Efficiency
 The Capacity of an object to capture water droplets in a flow.
COLLECTION EFFICIENCY*

Represents the ratio of the mass-flux of the impinging droplets to the mass flux in the free stream.
It is the ability of an object to capture water droplets presented in the flow.
Local collection efficiency β is a differential form.

$\beta \uparrow$ quand:

$\alpha \uparrow$, $V_a \uparrow$, $MVD \uparrow$

$C \downarrow$
Collection over a cylinder*

According to the studies of Lozowski et al. on fixed and rotating cylinder, calculations of the local collection for a cylinder can be used as a first approximation of ice accretion on other objects.

\[D = 0.03 \, C \]

To simplify the calculations of ice accretion on an airfoil, a cylinder with a diameter of 0.03 of the profile’s chord may be representative of the airfoil.
OBJECTIVES

This project addresses the issues of icing effects on wind turbines in cold climates.

- **General objectives**
 - To evaluate the long-term impact of icing on the performance of wind turbines.
 - To develop effective techniques for defrosting.

- **Specific objectives**
 To develop numerical tools to simulate geometry deformation of objects and wind turbine profiles due to ice accretion using commercial CFD programs which will enable us to switch to a three-dimensional simulation of ice accretion around rotating blades of wind turbine needed to assess in total the impact of icing on a wind energy site.
Methodology of ice accretion simulation - physical models*

Four modules have to be adapted to calculate the geometric deformation based on the local ice accretion rate on surface element for every time step:

- **Aerodynamics simulation**
 Turbulence modeling, Profile of velocity.

- **Estimation of collection efficiency**
 Based on aerodynamics simulation using Eulerian approach (Water Volume Fraction) or Lagrangian approach (Droplets' trajectory).

- **Thermodynamics**
 Calculation of ice accretion based on mass conservation and heat Transfer.

- **Geometric deformation**
 Based on the local ice accretion rate on surface element for every time step.

These modules are adapted using mutli-phase models available in ANSYS-CFX software to calculate the geometric deformation based on the local ice accretion rate on surface element for every time step.
The plan of study will consider the above modules to validate ice accretion simulation over a cylinder then to apply the method for wind turbine blades.
A multiphase CFX based approach into ice accretion modeling on a cylinder
Eulerian approach

Eulerian approach based on multiphase models in ANSYS-CFX is used to simulate water volume fractions in order to estimate the collection efficiency due to ice accretion over a cylinder.

The k- Epsilon turbulence model has been used for the continuous phase.

Flow specifications:
Buoyant, non homogeneous, stationary, inviscid, incompressible, turbulent flow and steady state analysis

The results have been validated to be applied for wind turbine blades geometric deformation
MESH AND DOMAIN

Computational domain of the half-disc input have been used, which reduces the deformation of the velocity profile at the entrance. ANSYS CFX solver can not solve problems in 2D, for that three-dimensional geometry was built with two identical symmetries, one is extruded from the other with an amplitude equal to the length of a mesh element.

A hybrid mesh made from different size elements has been generated using trapezoids near the wall for the boundary layer and triangles for the rest of domain.

Sufficient mesh resolution is used near the stagnation region to capture accurately the local impingement characteristics.
It is obvious that air velocity vectors near the stagnation point deviate from the wall while water ones go over it. Those vectors are the impingement velocities required for the calculation of ice accretion.
WATER VOLUME FRACTIONS

The resulting contours of normalized water volume fraction define the accretion zone around the cylinder. In the shadowed area, water volume fraction is almost zero, no water droplets exist. It starts from the separation zone where water droplets deviates from the cylinder.

In order to determine the efficiency of ice accretion, it will be more comprehensive to use the superficial water velocity which is relates to the velocity at which the flow would have travelled if the porosity of water volume fractions was 100%.
Water and air streamlines

Streamlines far from the cylinder pass straight without showing any interaction with it. The closer the streamlines are with the cylinder, the more affected they are by the presence of the cylinder.

We note separation zones near the cylinder and impingement regions very close to the solid.

In the wake of the cylinder, we can see recirculation zones that can significantly affect the trajectory of water droplet near the cylinder zone.

We can see that the color of the streamlines define the velocity of the airstream at different locations. In the vicinity of the cylinder that the color lightens then darkens again. This shows that the airstream is initially retarded and then accelerated again as it passes along, very close to the cylinder.
Local collection efficiency for a cylinder has been estimated using an Eulerian approach in CFX. The results are shown in the figure are illustrated with respect to the circumferential distance on the cylinder.

Simulation Conditions:
- Cylinder radius 0.0508 m
- Free stream velocity 80 m/s
- Median Volumic Diameter of droplets MVD=16μm
- Liquid Water Content LWC=0.55 g/m³
- Ambient temperature 285.15 K
- Ambient Pressure 89867 Pa
- Density of air at inlet 1.097 kg/m³

Local collection efficiency is plotted as a function of the wraparound-distance over the cylinder.

The peak value (β_{max} at stagnation point) = 0.47
The impingement limits = [-0.04m to +0.04m]
VERIFICATION & VALIDATION

Results of local collection efficiency estimated using Eulerian approach in CFX

Though we see that qualitatively the model correctly shows the regions of ice accumulation, we need to validate the results quantitatively. The results are compared with data produced by Ruff et al. [1] using a Lagrangean and Eulerian approach which have been in turn validated with the results of FENSAP-ICE(DROP3D) [7]. This figure shows the superposition of those three results.
The results of local collection efficiency estimated using Eulerian approach in ANSYS-CFX are also compared with experimental results [1] & [2].
Conclusion

In both, the Excel based trajectory calculations and the CFX based simulation, we note that in the wake of the cylinder, the streamlines tend to converge to reproduce the initial stream. Thus a point of inflexion is found soon after the centre of the cylinder, whereby the speed is accelerated in the wake and the y value decreases (or increase) as the x displacement increases until the streamline becomes parallel to the initial flow. We can, therefore, notice that the qualitative trajectory is in line with simulated streamlines and forces acting on the droplet.

In the first study we emphasized on the different equations that are required to model the particle tracking in an airstream. Furthermore, we defined intrinsic parameters that can affect the impingement such as the Mean Volumetric Diameter of the super cooled water droplets, and the Liquid Water Content. The EXCEL based model was made as generic interface in order that parameters can be easily changed when required.

In the second study we focused on the domain, mesh, turbulence and energy model calibration. A very important part of this paper tackles the limitations of our model and explains deviations from results as such. In later studies, such limitations will be catered for. We notice that the model provides very interesting results concerning the water collection efficiency which are validated with mathematical and experimental results.

Ice accretion simulation requires very complex and multi-disciplinary modeling. Creating an EXCEL friendly interface for water droplet trajectory calculations and the validation of ANSYS-CFX based icing simulation around the cylinder which is the fundamental of icing researches, shows the efficiency of adopting commercial softwares to reducing complexity of icing simulation to be further applied for a three-dimensional simulation of ice accretion around rotating blades of wind turbine to estimate geometry deformation and subsequent aero-elastic consequences in order to assess in total the impact of icing on a wind energy site.
REFERENCES

