Adaptive Control of Variable-Speed Variable-Pitch Wind Turbines Using RBF Neural Network

By: Hamidreza Jafarnejadsani, Dr. Jeff Pieper, and Julian Ehlers

October 2012, London, ON

EPEC 2012
OVERVIEW

1. Introduction to Wind Turbine Control System
2. Wind Turbine Modeling
3. Torque Control Using RBF Neural Network
4. Pitch Control Using RBF Neural Network
5. Results of Simulations Using FAST Software
6. Future Work: L_1-Optimal Control of Wind Turbines

EPEC 2012
Wind Turbine Control System

Outer Loop (slow time response)
- Aerodynamics
- Mechanical Subsystems (Drive Train and Structure)

Inner Loop (fast time response)
- Power Generator Unit
- Pitch Servo

[Ref: Boukhezzar, B., H. Siguerdidjane, “Nonlinear Control with Wind Estimation of a DFIG Variable Speed Wind Turbine for Power Capture Optimization]
Control Strategy and Objectives

- Variable-Speed, Variable-Pitch Control

![Ideal power curve](Ref: Wind Turbine Control Systems, Page 51)

- **Control Objectives:**
 1) Energy Capture
 2) Power Quality
 3) Mechanical Loads

EPEC 2012
Non-linear Equations of Wind Turbine

- **Drive-train shaft dynamics:**
 \[(J_R + J_G)\ddot{\Omega} + C_L\Omega + T_{el_e}(\Omega, V_w) - T_a(\Omega, V_w, \dot{d}) = 0\]

- **Elastic tower fore-aft motion:**
 \[M_T\ddot{d} + C_T\dot{d} + K_T d - F_a(\Omega, V_w, \dot{d}, \dot{d},) = 0\]

- **Where:**
 - \(\Omega\): Rotor Speed
 - \(d\): Tower top Displacement
 - \(\lambda\): Tip-Speed Ratio
 - \(C_T\): Power Coefficient
 - \(V_w\): Wind Speed
 - \(T_a\): Aerodynamic Torque:
 - \(T_{el_e}\): Generator Torque
 - \(F_a\): Thrust Force
 - \(M_t, C_t, K_t\): Equivalent Mass, Damping Ratio, and Stiffness of Tower

Ref: C.L. Bottaso, Politecnico di Milano, Italy, Wind Turbine Modeling and Control
Non-linear Equations of Wind Turbine

- \(\lambda \): Tip-Speed Ratio
 \[
 \lambda = \frac{\Omega R}{V_w - \dot{d}}
 \]

- \(T_a \): Aerodynamic Torque
 \[
 T_a = \frac{1}{2} \rho \pi R^3 \frac{C_p(\lambda, \beta_e)}{\lambda} (V_w)^2
 \]

- \(F_a \): Thrust Force
 \[
 F_a = \frac{1}{2} \rho \pi R^2 C_f (V_w - \dot{d})^2
 \]

- \(C_p \): Power Coefficient
 \[
 C_p(\lambda, \beta) = c_1 \left(\frac{c_2}{\lambda_i} - c_3 \beta - c_4 \right) e^{\frac{-c_5}{\lambda_i}} + c_6 \lambda
 \]
 \[
 \frac{1}{\lambda_i} = \frac{1}{\lambda + 0.08\beta - \beta^3 + 1}
 \]
 \[
 c_1 = 0.5176, c_2 = 116, c_3 = 0.4, c_4 = 5, c_6 = 0.0068
 \]

- **Control Inputs**: Generator Torque (Tel) & Pitch Angle (\(\beta_e \))
FAST Wind Turbine Simulation Software

- FAST: (Fatigue, Aerodynamics, Structures and Turbulence) is an Aero-elastic Simulator.
 Developed by NREL (National Renewable Energy Laboratory), Golden, CO
- A Variable-Speed Variable-Pitch Wind Turbine:
 NREL-Offshore-Baseline-5MW (Parameters developed by NREL)

<table>
<thead>
<tr>
<th>Rating</th>
<th>5 MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotor Orientation, Configuration</td>
<td>Upwind, 3 Blades</td>
</tr>
<tr>
<td>Control</td>
<td>Variable Speed, Variable Pitch</td>
</tr>
<tr>
<td>Rotor, Hub Diameter</td>
<td>126 m, 3 m</td>
</tr>
<tr>
<td>Hub Height</td>
<td>90 m</td>
</tr>
<tr>
<td>Cut-In, Rated, Cut-Out Wind Speed</td>
<td>3 m/s, 11m/s, 25 m/s</td>
</tr>
<tr>
<td>Cut-In, Rated Rotor Speed</td>
<td>6.9 rpm, 12.1 rpm</td>
</tr>
<tr>
<td>Rotor Mass</td>
<td>110,000 kg</td>
</tr>
<tr>
<td>Optimal Tip-Speed-Ratio</td>
<td>7.55</td>
</tr>
<tr>
<td>Rated Generator Torque</td>
<td>43,100 Nm</td>
</tr>
<tr>
<td>Maximum Generator Torque</td>
<td>47,400 Nm</td>
</tr>
<tr>
<td>Rated Generator Speed</td>
<td>1174 RPM</td>
</tr>
</tbody>
</table>
Radial-Basis Function (RBF) Neural Networks

- RBF Neural Networks Approximate the Nonlinear Dynamics of Control System
- Robust to Uncertainties and Disturbances in the System
- Fast Time Response

\[\phi(||x - x^{(i)}||) = \exp\left(-\frac{||x - x^{(i)}||}{2\sigma_i^2}\right) \]

A two-point radial-basis function [Ref: Stanislaw H Zak, Systems and Control, pg 495]
Torque Control

- At wind speeds lower than rated wind speed
- Maximum power capture
- Constant Pitch Angle
- Equation is in the affine form

\[\dot{\Omega} = f(\Omega, V_w) + gu \]

\[f(\Omega, V_w) = \frac{1}{2} \rho \pi R^3 \frac{C_p(\lambda)}{\lambda} (V_w)^2 - C_t \Omega \]

\[g = \frac{-1}{(J_R + J_G)} \]

\[u = T_{el_e} (\text{control input}) \]

- RBF NN Approximator

\[\frac{f(\Omega, V_w)}{g} = Q(\Omega, V_w)w + d(\Omega, V_w) \]
Control Design and Updating Rule Using Lyapunov Theory

- Tracking error:
 \[e = \Omega - \Omega_{opt}(V_w) \]

- Controller:
 \[\hat{u} = T_{ele} = -Q(\Omega, V_w)\hat{w} + k \left(\Omega - \Omega_{opt}(V_w) \right) \]

- Lyapunov function:
 \[V = \frac{1}{(-2g)} e^2 + \frac{1}{2\beta_1} \hat{w}^T\hat{w} \quad , \quad g < 0 \text{ (constant)} \quad , \quad \beta_1 > 0 \]

- Robust weight update using e-modification method:
 \[\dot{\hat{w}} = -\beta_1 \left(Q^T(\Omega, V_w) \left(\Omega - \Omega_{opt} \right) + \nu \left| \Omega - \Omega_{opt} \right| \hat{w} \right) \quad , \quad \nu > 0 \]
Pitch Control

- At wind speeds Higher than rated wind speed
- Limiting the power capture at nominal capacity of wind turbine
- Constant generator torque
- Equation is in the non-affine form

\[\dot{\Omega} = f(V_w, \Omega, \beta_e) \]

\[\dot{\Omega} = \frac{1}{2} \rho \pi R^3 C_p(\lambda, \beta_e) \frac{(V_w)^2}{(J_R+J_G)} - \frac{1}{(J_R+J_G)} (T_{nom} + C_L \Omega) \]
Control Design and Updating Rule Using Lyapunov Theory

- **Transformation (Inverse Dynamics Method)**
 \[v = \dot{x}, \quad v = f(x, u^*) \quad \nu - f(x, \alpha(x, v)) = 0 \]
 \[e = x - x_{des} \quad \nu = \dot{x}_{des} - ke \]

- **Approximating ideal controller using NN:**
 \[u^* = \varphi(x, \nu)w^* + \varepsilon(x) \quad u = \varphi(x, \nu)\hat{w} \]

- **Mean value theorem:**
 \[f(x, u) = f(x, u^*) + (u - u^*)f_u \]
 \[f_u = \left[\frac{\partial f(x,u)}{\partial u} \right]_{u=u_\lambda}, \quad u_\lambda = \lambda u + (1 - \lambda)u^* \]

- **Lyapunov function:**
 \[V = \frac{1}{2} \frac{e^2}{-f_u} + \frac{1}{2\beta} \hat{w}^T \hat{w}, \quad f_u < 0 \]

- **Robust weight updating rule:**
 \[\dot{\hat{w}} = -\beta (e\varphi^T(x, \nu) + v|e|\hat{w}) \]

EPEC 2012
Wind Speed Profile

![Wind Speed Profile Graph](image)
Results (Electrical Output Power)
Results (Control inputs)
Results of Simulation Using FAST Software for Region I (Maximum Power area)

- **Wind Inputs:** TurbSim-generated 24 x 24 grids of IEC Class A Kaimal-spectrum turbulence
- Six turbulence realizations per mean wind speed are simulated.

![Graph showing Electrical Power Output vs. Average Wind Speed]

- **Neural Network Controller**
- **PI Controller**

EPEC 2012
Results of Simulation Using FAST Software for Region III (Rated Power Area):

- Comparing The Performance of Controllers:
 1) Gain-Scheduled PI-Control (Developed by NREL)
 2) Proposed Adaptive Neural Network Control
Results (Electrical Output Power)
Results (Control input1: Generator Torque)
Results (Control input2: Pitch Actuation)
Introduction to L_1-Optimal Control

- The final purpose of L_1-optimal control is to find a controller (K) to stabilize the closed-loop system and minimize the L_∞-norm between disturbance input (w) and performance output (z).

\[\|z\|_\infty < \gamma \|w\|_\infty \]

Why L_1-Optimal Control?

- **1)** Persistent exogenous disturbances and noises. These inputs obviously have infinite energy (L_2-norm). However, they have bounded magnitudes (L_∞-norm).
 - EX: varying wind conditions that face the wind turbine.

- **2)** Direct time-domain performance specifications
 - EX: overshoot, bounded magnitude, bounded slope, or actuator saturation

LMI (Linear Matrix Inequality) Approach to L_1-Optimal Control

- LMI method results in a convex minimization problem subject to LMI constraints.
Thank You For Your Attention

EPEC 2012